
Technical Report
CMU/SEI-95-TR-019
ESC-TR-95-019

Carnegie-Melion University

^r Software Engineering Institute

An Evolutionary Perspective of Software Engineering

Research Through Co-Word Analysis

Neal Coulter

Ira Monarch

Suresh Konda

Marvin Carr

March 1996

tmfsmmcm~§ A i

äpppemd far gwübJie «skras»}
EHatrffotAaa Uniteltied

*#^

19960606 072

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-95-TR-019

ESC-TR-95-019
March 1996

An Evolutionary Perspective of Software Engineering

Research Through Co-Word Analysis

Neal Coulter

Florida Atlantic University

Ira Monarch

Suresh Konda

Marvin Carr

Software Engineering Institute

Risk Program

DUG QUALITY INSPECTED #

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction
1.1 Motivation for This Empirical Study 1

1.2 Questions Addressed, Tools Employed ^
1.3 Intended Audiences -Alternative Routes Through the Paper 3

2 The Data and Its Descriptors

The Metric and the Algorithm
3.1 The Metric
3.2 The Algorithm

3.2.1 Pass-1
3.2.2 Pass-2
3.2.3 Algorithm Constraints
3.2.4 Algorithm Summary

3.3 Comments on Selection of Network Parameters

Types of Networks and Their Interactions
5.1 Methodology
5.2 Findings
5.3 Evidence of a Coalescing Field

Super Network Analysis
6.1 Methodology
6.2 Findings

Trends over Periods
7.1 Analysis of Descriptor Contexts
7.2 Analysis of Networks Across Time Periods

9
9
9

10
12
15
15
16

Network Analysis
4.1 Network Names

4.1.1 Methodology
4.1.2 Findings

4.1.2.11982-1986 Networks
4.1.2.21987-1990 Networks
4.1.2.31991-1994 Networks 1R

4.2 Network Summaries ,;;
4.2.1 Methodology
4.2.2 Findings

17
17
17
17
18

21
21
21

25
25
25
27

29
29
29

35
35
39

CMU/SEI-95-TR-19

7.2.1 Methodology 39
7.2.2 Findings 39
7.2.3 Similarity Index Within a Time Period 42

8 Descriptor Analysis 43
8.1 Analysis 43
8.2 Findings 47

9 Conclusions 4g
9.1 Methodology 4g
9.2 Findings 49

9.2.1 The Role of Software Tools 49
9.2.2 Software Engineering and Computer Science 50
9.2.3 Limitations of This Study 50

10 References 51

Appendix: Maps of All Networks 55
A.1 1982-1986 Maps of 15 Networks 56
A.2 1987-1990 Maps of 16 Networks 64
A.3 1991-1994 Maps of 11 Networks 72

CMU/SEI-95-TR-19

List of Figures

Figure 1 First Example of a Pass-1 Network 11
Figure 2 Second Example of a Pass-1 Network 11
Figure 3 Pass-1 and Pass-2 Nodes and Links 13
Figure 4 1982-1986 Centrality and Density 26
Figure 5 1987-1990 Centrality and Density 26
Figure 6 1991-1994 Centrality and Density 27
Figure 7 1982-1986 Super Network, x = 2 33
Figure 8 1987-1990 Super Network, x = 2 33
Figure 9 1991 -1994 Super Network, x = 2 34
Figure 10: Ada in Network-1, 1982-1986 36
Figure 11: Ada in Network-10, 1987-1990 36
Figure 12: Ada in Network-7, 1991-1994 37
Figure 13: Structured Programming in Network-5, 1982-1986 38
Figure 14: Structured Programming in Network-8, 1987-1990 38
Figure A.1-1: Software Management - Ada 56
Figure A.1-2: Logic Programming 56
Figure A.1-3: User Interfaces 57
Figure A.1 -4: Standards 57
Figure A.1-5: Tools and Techniques - Structured Programming - Pascal 58
Figure A.1-6: Software Development 58
Figure A.1-7: Software Libraries 59
Figure A.1-8: Testing and Debugging - Correctness Proofs 59
Figure A.1-9: Reliability 60
Figure A.1-10: Program Editors 60
Figure A.1-11: Requirements/Specifications - Systems Analysis and Design 61
Figure A.1-12: Modules and Interfaces 61
Figure A.1-13: Real-Time Systems 62
Figure A.1-14: Abstract Data Types 62
Figure A.1-15: Metrics 63
Figure A.2-1: Geometrical Problems and Computations 64
Figure A.2-2: Correctness Proofs - Languages 64
Figure A.2-3: Logic Programming 65
Figure A.2-4: Requirements/Specifications - Methodologies 65
Figure A.2-5: User/Machine Systems 66

CMU/SEI-9J >-TR-19 iii

68
69
69
70

Figure A.2-6: Methodologies - Software Development 66
Figure A.2-7: Standards 67

Figure A.2-8: Structured Programming 67

Figure A.2-9: Applications and Expert Systems - Tools and Techniques 68
Figure A.2-10: Concurrent Programming - Ada

Figure A.2-11: Computer-Aided Design

Figure A.2-12: Error Handling and Recovery

Figure A.2-13: Distribution and Maintenance

Figure A.2-14: Software Configuration Management 70
Figure A.2-15: Reusable Software 71

Figure A.2-16: Software Management - Design 71

Figure A.3-1: User Interfaces 72

Figure A.3-2: Petri Nets 72

Figure A.3-3: Software Development - Object-Oriented Programming 73
Figure A.3-4: Software Libraries - C++ - Microsoft Windows 73
Figure A.3-5: Windows 74

Figure A.3-6: X-Windows 74

Figure A.3-7: Tools and Techniques - CASE - Systems Analysis and Design 75
Figure A.3-8: Requirements/Specifications 75

Figure A.3-9: General

Figure A.3-10: Concurrent Programming
Figure A.3-11: Metrics

76
76
77

IV
CMU/SEI-95-TR-19

List of Tables

Table 1: Distribution of Documents by Year
Table 2: Documents and Descriptors per Time Period
Table 3: Links in Decreasing Order of Strength
Table 4: Parameters and Resulting Networks
Table 5: Network Names and Numbers
Table 6: 1982-1986 Network Summary Data
Table 7: 1987-1990 Network Summary Data
Table 8: 1991 -1994 Network Summary Data
Table 9: Comparison of Properties for Time Periods
Table 10: Possible 1982-1986 Super Networks
Table 11: Possible 1991 -1994 Super Networks
Table 12: Possible 1987-1990 Super Networks
Table 13: Summary of Descriptor Data
Table 14: CCS Descriptor Summary Data

7
7

14
15
20
22
23
24
28
30
31
32
44
46

CMU/SEI-95-TR-19

vi CMU/SEI-95-TR-19

Acknowledgments

David Gluch, Nancy Mead, Robert Park, Will Hayes, Eswaran Subrahmanian, Mario Barbacci,
Anthony Ralston, Christopher Fox, and Dennis Frailey provided many helpful suggestions for
improving the content and clarity of this paper. We thank Ronald Higuera and Clyde Chittister
for their support in this extended study. Suzanne Couturiaux and Tanya Jones greatly assisted
in final preparation of the report.

CMU/SEI-95-TR-019 ~ ^jj

viii CMU/SEI-95-TR-019

An Evolutionary Perspective of Software Engineering
Research Through Co-Word Analysis

Q^traCt:
c
ThiS Study applies various t00ls- techniques, and methods that the

Sottware Engineering Institute is evaluating for analyzing information be nn
produced at a very rapid rate in the discipline-both in pÄTnÄ^rS?
The focus here ,s on mapping the evolution of the research liferau'eas a

SLdples sTftwaT S°ftWare engineering and distinguish it ttom other aiscipnnes. Software engineering is a term often USPH tn H««;^

programming-in-the-.arge activities^*, any pre™se^inÄSct2Ä
of its conceptual contours and their evolution is lacking In'fhisstudv a la me

terms) from the Computing Classification System and"prSS^neÄ rS
terms that reveal patterns of associations.The resuKs Tuqqest Trtr^l

Sfo^T in SOftWare engineerin9 remain conäntfufwi h changhq
ST nthSl them.eS matUre and then diminish as m^Jor research topics whSe st.ll others seem transient or immature. Certain themes are eZmi'nn 2
predominate for the most recent time period covert (199 1|£TOJ?
oriented methods and user interfaces are'identiSe as centra. Jhemes****'

1 Introduction

1.1 Motivation for This Empirical Study

aEnd9i^nQ diSdPlineS ln b°th reSearCh and Practice 9enerate information at a very rapid rate
and software engineenng is no exception. The Software Engineering Institute isZ2
vanous tools, techniques, and methods that aid in managing this iZ^Z^^

Me of software engineering, the Software Engineering .nstitute itse.f, a3Tc^

ne ino °m9 TT^^ ^ ^ *"*f0CUSeS °" the disciPline of ^1^ e
neenng as a whole, especially with respect to research literature being producedlnTe fiefd
t is important to note, however, that many of the same tools, techniques an"e u e i

for filtering information and for detecting patterns and trends at the global res^rch level Jr.
also applicable at the local organizational level. V6' are

1.2 Questions Addressed, Tools Employed
Interesting discussions about the nature and status of software engineering have occurred in
ecent years.We thought it would be interesting to explore this issue by lettfng the "search in

software, engmeenng describe itse.f through the medium of the information rrCoZ^s
we had been investigating. We formulated the questions as the following-

CMU/SEI-95-TR^rj19~

Is software engineering a child of computer science, computer engineering, or information
systems, or is it an intersecting-but relatively independent-discipline? Is software engineering
changing with respect to its primary foci?

These are important issues in industry and academe because they address research appli-
cation, and curriculum concerns. These topics have been discussed by many professionals
[Ford 89], [Denning 92], [Dijkstra 89], [Gibbs 91], [Gibbs 89], [Gries 91], [Parnas 90] [Parnas

^U?^inQ 89]' [ShaW 90]' [JaCkSOn 94L [Br00ks 87J' tCoulter 94J- ln addition, a special
ACM/IEEE Computer Society task force is now commissioned to consider the matter [Bucklev
93], [Boehm 94]. y

While discussions about computer science/software engineering are useful, empirical studies
of the issue are also needed. Such studies require a carefully considered methodology and
accompanying data sets. The methodology we have chosen is based on co-word analysis
[Callon 86], [Callon 91], [Courtial 89], [Law 92], [Whittaker 89]. Co-word analysis reveals pat-

terns of associations among terms by measuring and representing the associations of terms
describing technical publications or other technical texts.

This study uses co-word analysis to provide insight into the nature of software engineering
Our hypothesis is that the identified patterns of term associations are maps of the conceptual
space of software engineering and its relations to other computing fields. Further a series of
such maps constructed for different time periods suggests a trace of the changes in this con-
ceptual space.

The technique is applied to a very large cross-section of published text (1982-1994) in the
computing field that is indexed with descriptors from the well-known Computing Classification

;/ol!m (CCS)- ThiS indeXed tGXt COmeS from the Association for Computing Machinery's
(ACM) Gu,de to Computing Literature (GUIDE), which covers an ACM publications database
Through professional indexers, GUIDE annually covers over 20,000 items by descriptors from
in© wOo.

CCS is a carefully designed taxonomy that has existed since 1982 [Sammet 82] and it has
been updated three times [Sammet 83], [Sammet 87], [Coulter 91]. Because CCS classifies
publications over the breadth of computing, it allows us to investigate trends and the position
of software engineering in the larger computing context.

tem'rCRCs?6 C°mPUting C,aSSifiCation System <CCS)was called the Computing Reviews Classification Sys- tem (CRCS).

Descriptors selected from CCS are distinguished from keywords freely chosen by the author Onlv CCS do
scnptors were used in this study. The issue of descriptors selected b-professionindexers asloosed to
free> selection of keywords by the authors, is important here. While both may have merte^SlS^KSS
to study a f,xed system that imposes a common nomenclature across all computing. ProteSSZcte^S

CMU/SEI-95-TR-019

1.3 Intended Audiences -Alternative Routes Through the Paper
There are several different kinds of audiences for this paper. It can be read on three levels:

1. At one level it is an attempt to characterize software engineering as a disci-
pline, both in its own right and in its important differences from other related
disciplines. No particular background is required, though some familiarity with
various issues in software engineering research or practice is necessary to
appreciate the conclusions reached. y

2. Some readers may be just as interested in finding out how useful the tools
techniques and methods are in answering the kinds of questions posed by
the study; they may have an interest in just how accurate and informative
such approaches are at summarizing large amounts of information and de-
tecting patterns and trends in it. A willingness to wade through some descrip-
tions of information retrieval and statistical techniques is required but these
descriptions are self-contained.

3. A third group of readers might be interested in evaluating these tools tech-
niques, and methods to gain an understanding of how they might be applied
in their own work. Here some familiarity with current work in information re-
trieval and computational linguistics would be useful, though not required for
anyone doing technical work in software engineering.

Following the introduction, a discussion of the data and its sources begins the main body of
the paper. Th.s includes the descriptors and codes used for indexing the software engineer-
ing documents, the sources of the documents indexed, and the numbers of documents cov-
ered in each of the respective time periods. This discussion of what is analyzed is followed by
a d.scuss.on in the next section of how ft is analyzed. In particular, the metric for determining
co-occurrence strength between descriptors associated with the same documents is
described. In the same section, the algorithm used to generate networks of co-occurrinq
descriptors ,s detailed. Example networks generated from descriptors of the software enq^
neenng literature are presented.

Next comes a discussion of the methods used for interpreting networks: in particular the
method used for naming them and a more technical discussion of how complexity of'net-
works ,s measured. These two discussions of methods are each followed by presentations of
findings that list, analyze, and describe the networks found in the time periods covered A
more general discussion of types of networks comes next; it focuses on two of their distin-
guishing factors called centrality and density. Examples from analyses of the current data
are provided and implications discussed.

Methods for identifying relationships among networks within a time period are pursued next
followed by a discussion of what was found when these methods were applied to the net-
works generated. Then an analysis of the findings from each time period are compared and
contrasted in order to determine how the discipline of software engineering has evolved over

ZZrr eTT The Pr°grammin9 sVstem Ada is Panted as an example. Finally, the
ast section before the conclusion discusses the distributions of categories of descriptors
fromdthenPo,nt of view of those that made it into the co-occurrence neLrks against those

CMU/SEI-95-TR-019

To assist the reader, some sections will have a heading for Methodology and for Findings.
These sections will expand on the research methods and on the software engineering specif-
ics, respectively.

CMU/SEI-95-TR-019

2 The Data and Its Descriptors

Co-word methodology operates on indexed textual data. This chapter describes these two
components for the study. Here, index terms used are taken directly from a standard taxono-

ZJr r^ 'app,iCati0ns at the SEI' software 's "sed to generate index terms directly
from the studied corpora. y

GUIDE reviews and indexes a large number of publications across the spectrum of computing
Publ.cat.ons reviewed generally include books, book chapters, journals, proceedings trade
magazines and other applied sources, and occasionally other media such as videotaped ma-
te™!. For the latest list of publications received, see the November 1995 issue of Computing
Rev,ews [CR 95]. .n addition, GU.DE indexes many proceedings and articles from proceed
ings.

WhC.CS .USeS a fTleVel C,assification system- Any descriptors semantically below the
fourth-leye are nevertheless grouped at this level (note that all sections of the tree do not have
four levels). The major CCS categories are listed below:

A-General Literature «,. ., ±. t „
G-Mathematics of Computing

B-Hardware u i„*
H-lnformation Systems

C-Computer Systems Organization l-ComPuting Methodologies
D-Software ■ ~ . . ,.

J-Computer Applications

K-Computing Milieux
F-Theory of Computation

The full CCS is described in the January 1996 issue of Computing Reviews [CR 96]

A complete rendition of the software engineering section of the taxonomy, D.2, follows Super-

^:^^:c«ptor is new beginnin9 with - ^ »*«* —-r:

lSZllTuo^ZTcc^ZaTar ln a d0CUmem indSXed be,0re the official ad°P«°n <* an updated ver-

be indexed until after a revision of CCS is in p.ace so he oSer version o? CCS i^noT'" ^ TJT ^
case, these occurrences are not common CS IS "° longer applied ln anV

CMU/SEI-95-TR-019

D.2 SOFTWARE ENGINEERING
D.2.0 General

Protection mechanisms
Standards

D.2.1 Requirements/Specifications
Languages
Methodologies
Tools

D.2.2 Tools and Techniques
Computer-aided software engineering (CASE)91

Decision table
Flow charts
Modules and interfaces
Petri nets 91

Programmer workbench
Software libraries
Structured programming
Top-down programming
User interfaces

D.2.3 Coding
Pretty printers
Program editors
Reentrant code
Standards

D.2.4 Program Verification
Assertion checkers
Correctness proofs
Reliability

D.2.5 Testing and Debugging
Code inspections and walk-throughs 91

Debugging aids
Diagnostics
Dumps
Error handling and recovery
Symbolic execution
Test data generators
Tracing

D.2.6 Programming Environments
Interactive 87

D.2.7 Distribution and Maintenance
Corrections
Documentation
Enhancement
Extensibility
Portability
Restructuring
Version control

D.2.8 Metrics
Complexity measures
Performance measures
Software science

D.2.9 Management
Copyrights
Cost estimation
Life cycle
Productivity
Programming teams
Software configuration management
Software quality assurance
Time estimation 91

D.2.10 Design87

Methodologies 87

Representation 87

D.2.m Miscellaneous
Rapid prototyping 83

Reusable software 83

An item is almost always classified by multiple CCS descriptors. Even though there are up to
four CCS levels, an item can be classified at any level that is appropriate; all branches of CCS
do not have four levels. CCS does not include names of systems and languages (Unix Ada
Windows etc.); instead, they are called implicit subject descriptors and can be used by index-
ers as needed. As we will see, their inclusion is common and often significant.

We obtained descriptors for all items indexed in GUIDE that had at least one descriptor in the
D.2 category. Hence, the study admits descriptors from throughout CCS as long as an item
has at least one D.2 descriptor. This selection allows us to examine interactions of software
engineering nodes with other nodes in CCS. We could have refined this study by selecting
more specific CCS descriptors (such as how Software Engineering [D.2] interacts with Pro-
gramming Techniques [D.1],4 for example). However, this study focuses on the larger ques-
tion of how software engineering interacts with computing as a whole, i.e., on the interactions
of software engineering with all other nodes of the CCS. The data we received reflect the
March 1995 update to the GUIDE database.5 Table 1 shows the numbers of indexed docu-

We show the corresponding CCS node after a descriptor for context when needed.

CMU/SEI-95-TR-019

merits that we analyzed for the years 1982-1994.

Table 1: Distribution of Documents by Year

Year Number of Documents

1982 81

1983 33

1984 211

1985 367

1986 1,027

1987 1,479

1988 2,329

1989 1,928
1990 1,914

1991 1,738

1992 2,016
1993 2,159
1994 1,612
Total 16,691

The total is16,691 documents. As is evident, the number of documents was small until 1986
The 16,691 items were indexed by a total of 57,727 descriptors (a mean of 3.46 per item).

For analysis, we grouped the data for the years 1982-1986,1987-1990, and 1991 -1994 This
separates the sparse years 1982-1986 from the others, gives approximately equal numbers
of documents in the latter two periods, and provides breaks when CCS was updated so we do
not confuse new descriptors across periods. Data for documents, descriptors, and their ratios
for the time periods are shown in Table 2.

Table 2: Documents and Descriptors per Time Period

Time Period

1982-1986

1987-1990

1991-1994

Documents

1,646

7,650

7,395

Descriptors

5,645

28,471

23,611

Descriptor/Document
Ratio

3.43

3.72

3.19

S:=SS=~=~"-~===
CMU/SEI-95-TR-019

CMU/SEI-95-TR-019

3 The Metric and the Algorithm

While some CCS-based results are presented here to demonstrate the methodology this
chapter focuses on underlying theory of co-word ana.ysis. A«, readers need the maSn this

Co-word analysis enables the structuring of data at various levels of analysis- (1) as networks
of „nks and nodes (nodes in our networks contain descriptors that JdZlTSt
d.stnbutions of networks called super networks; and (3) as transfori^^

super networks over time periods. These structures and changing relationship proTdeaPa
sis for tracing the evolution of software engineering. P

Co-word analysis reduces a large space of related terms to multiple related smaller spaces
tha are easier to comprehend, but that a.so indicate actual partitions of IriterielSSS
.n the literature being analyzed. This ana.ysis requires an association neZTlTZo
rithm for searching through the space. measure ana an algo-

ITtoconZ 't deSi9ned * ldentify ^^ °f Str0n9 f0CUS that interrel*te. This scheme allows us to construct a mosaic of software engineering topics.

3.1 The Metric

eTlLaÄ^'Sr te
ba

been Ted "* P*" «* P=a»on 91,, [Courtia,
»j, [Law »4 [Whittaker 89). The basic metric most suitable for this study is Strenath S (called

Equivalence Index by Callon). It is described as follows: (

umen.eTrrrS''*"" '' C°^U''" "^ m US6d '°9e,her in ,he classification of a single doc-
ument Take a corpus consisting of N documents. Each document is indexed by a set of

ofTsec rrTetir r Tmui,ip,e documen,s-Let °* ^ »» »^szzzz
c beTe n ,mh»; , "meS * iS US6d ,0r indexin9 docume"'s 'n «™ corpus. Let

^^iz^zom"'ences of descriptors' *>* > ^ ■»-*« - «°~ *-
Then Strength S of association between descriptors , and / is giyen by the expression:

c
2

S(c,, cy, c/y) = -JL0<S<1

Two descriptors that appear many times in isolation but only a few times together will violrt «

r0,
scovr:rs°

descrip,ors that *«- —* - - -^srr. c:
3.2 The Algorithm

The algorithm makes two passes through the data to produce pair-wise connections of de

Z bM'TdT?; * netW°rk COnSlStS °f n°deS <*«**'•■> °°~ bT nks Ea h ode
must be linked to at least one other node in a network. The first pass (Pass-lfdenerates^
pnma„ associations among descriptors; these descriptors are called tola S and the
corresponding „nks are called interns, links. A second pass (Pass-2, genel«bei

CMU/SEI-95-TR-019

Pass-1 nodes across networks, thereby forming associations among completed networks.
Pass-2 nodes and links are called external ones.

Pass-1 builds networks that can identify areas of strong focus; Pass-2 can identify descriptors
that associate in more than one network and thereby indicate pervasive issues. This pattern
of networks yields a mosaic of the data being analyzed.

3.2.1 Pass-1

During Pass-1, the link that has the highest strength is selected first. These linked nodes be-
come the starting points for the first network. Other links and their corresponding nodes are
then determined breadth-first.

Figure 1 illustrates this process for a 1991-1994 Pass-1 network. This figure displays the net-
work connections as a map.6 This network, named User Interfaces, is the first one created by
the co-word algorithm for 1991-1994 data. The links are numbered in the order formed.

All nodes contained in the resulting Pass-1 network are removed from consideration for inclu-
sion in subsequent Pass-1 networks. The next network then starts with the link of highest S
value of the remaining links (i.e., ones not containing nodes from any previous network).

This Pass-1 strategy does not necessarily (or usually) yield S strengths in strict descending
order, either within individual networks or among sequentially generated networks with re-
spect to the sum or average of S strengths. The first network becomes the first network only
because it starts with the highest link; the second network then starts with the highest link
among remaining links, and so forth. This order of generation is not especially significant be-
cause it is possible that the links included in a network after the initial link do not have co-oc-
currence strengths in the same high range as this initial link.

Figure 2 shows Pass-1 links for a second 1991-1994 network. This network, named General,
was the ninth one generated from 1991-1994 data.

These were originally called Leximappes [Turner 88].

10 CMU/SEI-95-TR-019

r
Computer science education K.3.

I Human factors H. 1.2

User interface manage-
ment systems (umis)
H.5.2

User/machine systems H.1.2

Figure 1: First Example of a Pass-1 Network

r
Curriculum K.3.2

General D.2.0

r General D.3.0

ü
]

1991-1994 Map 9: General

Figure 2: Second Example of a Pass-1 Network

CMU/SEI-95-TR-019
11

3.2.2 Pass-2

The second pass (Pass-2) is designed to seek further associations among descriptors found
in Pass-1. During Pass-2, networks are extended by the addition of Pass-2 links. To be a can-
didate for inclusion in Pass-2, both nodes (descriptors) of a Pass-2 link must be in some Pass-
1 networks. A Pass-2 link connects a Pass-1 node in a given network to a node that had oc-
curred as a Pass-1 node in another network but is represented in the given network as a Pass-
2 node.7 Pass-2 nodes and Pass-2 links are represented by thin boxes and by thin lines con-
necting them with Pass-1 nodes, respectively. Pass-2 becomes the basis for determining how
networks fit together in larger super networks (see Chapter 6, Super Network Analysis).

As in Pass-1, candidate links are included in Pass-2 based on their strengths and co-occur-
rence counts. The order of Pass-2 links is by descending values for qualifying links. A node
can appear in only one Pass-1 network, but can appear in more than one Pass-2 link.

Figure 3 illustrates this process for Pass-2 of the network in Figure 1. Recall that Pass-2 nodes

must always appear previously as Pass-1 nodes in other networks. In Figure 2, Curriculum
(K.3.2) forms a Pass-2 connection with the Pass-1 node Computer Science Education (K.3.2)
via link 11 in Figure 3.

Sometimes two Pass-1 nodes in a network are joined during Pass-2; such links are considered Pass-1 links
because they join two Pass-1 nodes.

12
CMU/SEI-95-TR-019

r
Ada D.3.2 General D.2.0 Curriculum K.3.2

Computer science education K.3.2

Software devel-
opment K.6.3

Windows D.2.2

16

User interface management
systems (umis) H.5.2

User/machine systems H.1.2

Design D.2.10 Tools and techniques D.2.2 X-Windows D.2.2

1991 -1994 Map 1: User Interfaces

Figure 3: Pass-1 and Pass-2 Nodes and Links

Table 3 shows data for Pass-1 and Pass-2 links in Figure 3. The Pass-1 networks of all nodes
incorporated during Pass-2 are given in the last column (it is 1 for all Pass-1 links). Two nodes
from Figure 2 (Map 9 of 1991-1994) are in Pass-2 links of the Figure 1 network. Other links
come from the various Pass-1 networks for the data.

CMU/SEI-95-TR-019 13

Table 3: Links in Decreasing Order of Strength

Order Node 1 Node 2 Co-
occurrence

Strength
(S)

Pass-1
Map

Pass-1
1 User interfaces D.2.2 User interfaces H.5.2 177 0.181802
2 User interfaces H.5.2 User/machine systems

H.1.2
56 0.062695

3 User interface manage-
ment systems (uims)

H.5.2

User interfaces D.2.2 47 0.057496

4 User interfaces D.2.2 User/machine systems
H.1.2

69 0.051381

5 Interaction techniques
1.3.6

User interfaces D.2.2 32 0.036248

10 Computer science educa-
tion K.3.2

Human factors H. 1.2 20 0.029121

6 Interaction styles H.5.2 User interfaces D.2.2 44 0.025195
7 Evaluation/methodology

H.5.2
User interfaces D.2.2 16 0.012586

8 Screen design H.5.2 User interfaces D.2.2 16 0.012246
9 Human factors H.1.2 User interfaces D.2.2 27 0.009487 1

Pass-2
11 Computer science educa-

tion K.3.2
Curriculum K.3.2 18 0.080198 9

12 Computer science educa-
tion K.3.2

General D.2.0 38 0.034534 9

13 Ada D.3.2 Computer science edu-
cation K.3.2

17 0.009506 7

14 Human factors H.1.2 Software development
K.6.3

24 0.009167 3

15 Design D.2.10 User/machine systems
H.1.2

18 0.007778 8

16 Interaction styles H.5.2 Windows D.2.2 29 0.007569 5
17 Object-oriented program-

ming D. 1.5
User interfaces D.2.2 55 0.007446 3

18 User interfaces H.5.2 X-Windows D.2.2 19 0.005405 6
19 Tools and techniques

D2.2
User interfaces H.5.2 34 0.005361 7

20 Management D.2.9 User interfaces D2.2 29 0.004623 3
21 Management D.2.9 User/machine systems

H.1.2
15 0.004261 3

14
CMU/SEI-95-TR-019

3.2.3 Algorithm Constraints

nWihr,,ST7inimUm COnStrain,S'deSCrip,0rs appearin9 "*»■•% »"> almost always to-
gether could dominate networks; henoe a minimum oo-ocourrenoe c . value is requted to
generate a hnk. At the same time, some maps oan beoome cluttered due'to an exoeslTnum

fl° ?":f JinkS (bU' °f 9enerally deCr6aSin9 S ValUeS>; "—• ^CZZZl
of nodes and hnks are sometimes required to faoilitate the discover of major partitions of con

TJ:Ze'' ^^ "e,WOrkS are limi,Sd °nly by ,he nUmbar of <uali<^ «*"■ as tz
For the time periods of 1987-1990 and 1991-1994,15 co-occurrences of descriptors were re-
quired before they could become candidates for linking; for 1982-1986, the co-occurrence cut-
off was set at 5 to accommodate the lesser volume of data. For all time periods the number of
«s and nodes ,n each network, both Paes-1 and Pass-2, was set a, 24 links and 20 nodes
For these values, the co-word algorithm generated 15,16, and 11 networks, respectively for
the penods 1982-1986,1987-1990, and 1991-1994. Table 4 summarizes these values

Table 4: Parameters and Resulting Networks

Time Period Minimum Co-
occurrence

Maximum
Nodes

Maximum
Links

Networks
Generated

1982-1986 5 20 24 15
1987-1990 15 20 24 16
1991-1994 15 20 24 11

1

2

3

4

5

6

3.2.4 Algorithm Summary
Following is a summary of the algorithm:

Select a minimum for the number of co-occurrences, c, .for descriptors / and /

Select maxima for the number of Pass-1 links and nodes.

Select maxima for the total (Pass-1 and Pass-2) links and nodes.
Start Pass-1.

Generate the highest S va.ue from all possible descriptors to begin a Pass-1 network

ri, ,p to r°m th3t link' f°rm °ther ,inkS in a breadth-fi^t manner until no more links are possible

-nptor0r,~^^
8 Begin Pass-2.

9 Restore all Pass-1 descriptors to the list of available descriptors

CMU/S!E]^TR^öI9 —
15

value; stop when no remaining descriptors meet co-occurrence minima or when total node or
link maxima are met. Do not remove any descriptors from the available list.

11 Repeat Stepl 0 for each succeeding Pass-1 network.

A maximum number of Pass-1 networks can be specified in cases where an excessive num-
ber of networks will be generated otherwise; this restriction was not necessary here.

Numerous variations of this algorithm are possible.

3.3 Comments on Selection of Network Parameters
Link and node limitations mostly determine how networks will be generated in concert with the
corresponding co-occurrence minimum. If the co-occurrence minimum is too high, few links
may be formed; if it is too low, an excessive number of links may result. In the former case,
subspecialities in a field may not emerge; in the latter case, a field may look disproportionately

cluttered.

The parameters for 1982-1986 were chosen somewhat arbitrarily because of the small
amount of data. We attempted to establish a baseline for comparison with following genera-
tions. The primary point of contention was the co-occurrence value of 5. It is somewhat higher
in proportion to the number of documents and descriptors than the value of 15 for succeeding
generations. We feel the number of networks and super networks generated supports our
choice.

In setting co-occurrence values for the 1987-1990 and 1991 -1994 generations, the proper val-
ues could be determined at least two ways: as a function of the ratios of indexed items or the
ratio of the number of descriptors. We used the former. Because the numbers of items for the
generations were almost equal (7,650 and 7,395), we set the co-occurrences the same. How-
ever, the numbers of descriptors were sufficiently different (28,471 and 23,611) to question if
the co-occurrence for 1991 -1994 should be lower than for 1987-1990. To test this hypothesis,
we set the 1991-1994 co-occurrence at 13 and recomputed.

This change still resulted in 11 networks. Some networks were different, but only on the fring-
es. The central themes remained the same. More links and nodes were realized with the lower
co-occurrence value (16% and 19%, respectively), as would be expected. Many of these new
links and nodes were formed through additional connections of already existing nodes in the
same and in other maps existing at the higher co-occurrence level. Additionally, 1 isolated net-
work with only 2 nodes was absorbed by a larger network at the 13 co-occurrence level, while
a new, isolated network with 3 nodes and 2 links emerged.

So, while the link, node, and co-occurrence parameters effectively control the generation of
networks, small changes in their values appear to affect only marginal links, at least in this
study. Of course, additional and subsequent data can affect the generation of core themes
without changes in parameters, which is the intent of co-word analysis.

16 CMU/SEI-95-TR-019

4 Network Analysis

4.1 Network Names

4.1.1 Methodology

We named the maps in an attempt to summarize their main thrusts Thk k not«

4.1.2 Findings
The names chosen are as follows:

4.1.2.1 1982-1986 Networks

1 • Software Management - Ada

Management

2. Logic Programming

3. User Interfaces

Human factors, software psychology

4. Standards

5. Tools and Techniques - Structured Programming - Pascal

6. Software Development

Programming environments

7. Software Libraries

8. Testing and Debugging - Correctness Proofs

Software quality assurance, concurrent programming
9. Reliability

10. Program Editors

CMU/SEI-95-TR-019 ____

17

11. Requirements/Specifications - Systems analysis and design

12. Modules and Interfaces

13. Real-Time Systems

14. Abstract Data Types

15. Metrics

Life cycle

4.1.2.2 1987-1990 Networks

1. Geometrical Problems and Computations

2. Correctness Proofs - Languages

Semantics, real-time and embedded systems

3. Logic Programming

4. Requirements/Specifications - Methodologies

Program verification, abstract data types

5. User/Machine Systems

User interfaces, human factors

6. Methodologies - Software Development

Computer science education

7. Standards

8. Structured Programming

9. Applications and Expert Systems - Tools and Techniques

Interactive

10. Concurrent Programming - Ada

Compilers

11. Computer-Aided Design

12. Error Handling and Recovery

13. Distribution and Maintenance

14. Software Configuration Management

15. Reusable Software

16. Software Management - Design

4.1.2.3 1991-1994 Networks
1. User Interfaces

Computer science education

2. Petri Nets

3. Software Development - Object-Oriented Programming

18 CMU/SEI-95-TR-019

4. Software Libraries - C++ - Microsoft Windows

Object-oriented programming, C

5. Windows

6. X-Windows

7. Tools and Techniques - CASE - Systems Analysis and Design

Ada, object-oriented programming, programming environments

8. Requirements/Specifications

Testing and debugging, program verification

9. General

Computer science education

10. Concurrent programming

11. Metrics

Perusing the maps of networks in the appendix reveals several variations in structure. Some
maps have few nodes, some maps have many nodes, and some are dominated by connec-
tions from one or two nodes. Others have distributed connections; while still others are not re-
ally one map, but two (or three) maps. We will describe these variations more fully in the
following section.

For reference in the following sections, the primary network names for each time period are
given in Table 5. Note that networks are numbered sequentially in the order generated by co-
word analysis algorithms; hence, the same numbers do not imply the same network names
across time periods.

CMU/SEI-95-TR-019 ~~ ^

Table 5: Network Names and Numbers

1982-1986 1987-1990 1991-1994

1 Software Management - Ada Geometrical Problems and
Computations

User Interfaces

2 Logic Programming Correctness Proofs - Lan-
guages

Petri Nets

3 User Interfaces Logic Programming Software Development -
Object-Oriented Program-
ming

4 Standards c
Requirements/Specifications
- Methodologies

Software Libraries - C++ -
Microsoft Windows

5 Tools and Techniques -
Structured Programming -
Pascal

User/Machine Systems Windows

6 Software Development Methodologies - Software
Development

X-Windows

7 Software Libraries Standards Tools and Techniques -
CASE - Systems Analysis
and Design

8 Testing and Debugging -
Correctness Proofs

Structured Programming Requirements/Specifications

9 Reliability Applications and Expert Sys-
tems - Tools and Techniques

General

10 Program Editors Concurrent Programming -
Ada

Concurrent Programming

11 Requirements/Specifications
- Systems Analysis and
Design

Computer-Aided Design Metrics

12 Modules and Interfaces Error Handling and Recovery

13 Real-Time Systems Distribution and Mainte-
nance

14 Abstract Data Types Software Configuration
Management

15 Metrics Reusable Software

16

Software Management -
Design

20
CMU/SEI-95-TR-019

4.2 Network Summaries

4.2.1 Methodology

rna^-.v^,,^^.,;^ 0^ '^ oomplexlt of , ne(work Note

1/2. We observe that the ratios of links to noaL'a^T-' '"'"'""""' Va'Ue for L/N is

number of links, 2L/WN_ ,„" tTaZtT, " '" " "**""*'° i,S maximum I«-*

-e:crnrr?hÄ
works in a time period. These TalZTj^T*™ 'ndiV'dUal netW°rkS and ,OT a" "*
deflree e, interaotione „ ^u^^^^ZZ^ ™* ^ *"" *°

4.2.2 Findings

ChonrerThe0,i982ana'ySiS "*■ PreSen'ed'" Tab'6S "' ?' *"* 8'
15 ne'two^ ITaZ^lToleZ^r^ d0CUmentS Wer6 Cme'eä <*,he

ourring desohptors that appeared in at leasM „tt Jt *"* 698 d0Cuments had ««o

Now oonsider Map 1 in Table „ » T ^ "" "* "me Peri0d'

Notice tha, the neCs* ^T^ZTTT ^ ^ ™ ™ ««>•
Also note that the oolumn ^Ä*T d°CUm6m "d no* Va'UeS

aooumen, oan be inoluded in the ccnLÄ^C^^ *" 1°°% b~u- a

CMU7SEN95^019"

21

Table 6: 1982-1986 Network Summary Data

Total unique documents included: 698

Total documents available: 1646

Percentage of documents used:42%

Map Nodes N Links L L/N Percentage of
Connectivity

Unique
Documents

Percentage of
Documents3

1 18 24 1.33 16% 136 19%

2 2 1 0.50 100% 6 1%

3 17 24 1.41 18% 197 28%

4 2 1 0.50 100% 5 1%

5 20 23 1.15 12% 108 15%

6 20 22 1.10 12% 173 25%

7 3 2 0.67 67% 11 2%

8 20 23 1.15 12% 129 18%

9 6 6 1.00 40% 16 2%

10 3 2 0.67 67% 13 2%

11 17 24 1.41 18% 117 17%

12 2 1 0.50 100% 5 1%

13 3 2 0.67 67% 12 2%

14 3 2 0.67 67% 9 1%

15 12 13 1.08 20% 55 8%

Totals 992 142%a

Can exceed 100% because a document can be included in more than one network.

22
CMU/SEI-95-TR-019

Table 7: 1987-1990 Network Summary Data

Total unique documents included: 3062

Total documents available:7650

Percentage of documents used:40%

Map Nodes N Links L UN Percentage of
Connectivity

Unique
Documents

Percentage of
Documents3

1 6 6 1.00 40% 50 2%
2 17 22 1.29 16% 251 8%
3 3 2 0.67 67% 27 1%
4 16 24 1.50 20% 485 16%
5 15 24 1.60 23% 847 28%
6 20 23 1.15 12% 732 24%
7 3 2 0.67 67% 29 1%
8 4 3 0.75 50% 67 2%
9 19 24 1.26 14% 666 22%
10 18 24 1.33 16% 396 13%
11 4 3 0.75 50% 52 2%
12 2 1 0.50 100% 17 1%
13 4 3 0.75 50% 52 2%
14 6 5 0.83 33% 75 2%
15 16 24 1.50 20% 422 14%
16 11 20 1.82 36% 324 11%

Totals
—

4492 147%a

 .

a. Can exceed 100% because a document can be included in more than one network.

CMU/SEI-95-TR-019
23

Table 8:1991-1994 Network Summary Data

Total i anique docum

tal documents

entsincluded:2881

To available:7395

% documents used:38%

Map Nodes N Links L L/N Percentage of
Connectivity

Unique
Documents

Percentage of
Documents2

1 20 21 1.05 11% 565 20%

2 2 1 0.50 100% 27 1%

3 20 23 1.15 12% 861 31%

4 17 24 1.41 18% 492 18%

5 17 17 1.00 13% 401 14%

6 8 7 0.88 25% 125 4%

7 17 24 1.41 18% 643 23%

8 16 23 1.44 19% 487 17%

9 5 5 1.00 50% 95 3%

10 4 3 0.75 50% 37 1%

11 5 5 1.00 50% 83 3%

Totals 3816 136%a

a. Can exceed 100% because a document can be included in more than one network.

These data show the variation in network structures within a time period. Some networks are
minimal; they have only two nodes. Examples are Network-2, -12, and -2 (Logic Programming,
Error Handling and Recovery, and Petri Nets) from 1982-1986, 1987-1990, and 1991-1994,'
respectively. Some other networks approach minimal structure.

Other networks are more fully formed. Some embody the maximum allowable number of links
nodes, or both. See 1991 -1994 Network-1 ,-3, -4, -7, and -8 (User Interfaces, Software Devel-
opment - Object Oriented Programming, Software Libraries - C++ - Microsoft Windows, Tools
and Techniques - CASE - Systems Analysis and Design, Requirements/Specification) for ex-
amples.

24
CMU/SEI-95-TR-019

5 Types of Networks and Their Interactions

5.1 Methodology

There are essentially three types of networks: principal, secondary, and isolated. Principal net-
works are connected to one or more (secondary) networks. Secondary networks generally are
linked to principal networks through a relatively high number of external links in the principal
networks. Isolated networks have an absence (or low intensity) of links with other networks.

Isolated networks often have links with high S values, usually accompanied by low co-occur-
rence c,j values. While isolated networks are easy to recognize, principal and secondary net-
works may not be. Therefore, we will define and operationalize terms that characterize these
functionalities.

We defined density as the mean of the Pass-1 S values of a network; centrality is defined as
the square root of the sum of the squares of the Pass-2 S values of a network in order to dis-
tinguish among relatively close values. Density represents the internal strength of a network
while centrality represents a network's position in strength of interaction with other networks.**

5.2 Findings

Plots of centrality and density for each of the time periods are shown in Figures 4 5 and 6 9

The origin of these figures is the median of the respective axis values (the horizontal axis rep-
resents centrality; the vertical axis represents density). Not surprisingly, most networks with

strong centrality scores also show relatively high unique document counts and L/N ratios as
indicated in Table 5 for 1991 -1994 data.

Isolated networks show relatively low document counts and L/N ratios, (see 1991-1994 Net-
works, Petri Nets).

These terms are accepted ones in co-word analysis literature. We recognize that density and centralitv have
others domarn-spec.f.c connotations-say, in statistics. Alternative choices irKdude1^^2Ä3
these already have meanmgs in software engineering literature. Adhesionanö density ooidto used S'tha

Figures 4, 5, and 6 are not to precise scale; relative positions are represented.

CMU/SEI-95-TSO19 " ~ —
25

Figure 4: 1982-1986 Centrality and Density

"\

©^
■®- Centrality

©
I (Medians:(0.218, 0.046) j

Figure 5: 1987-1990 Centrality and Density

26
CMU/SEI-95-TR-019

f Medians:(0.267, 0.035) ^)

Network 1 - User Interfaces
Network 2 - Petri Nets
Network 3 - Software Development - Object-Oriented Proqrammina

HSSH i: $£££Libraries"Gt+ ■Jicroso" «**•
Network 6 - X-Windows
Network 7 -Tools and Techniques - CASE
Network 8 - Requirements/Specifications
Network 9 - General

Systems Analysis and Design

Network 10 - Concurrent Programmina
Network 11 - Metrics

Figure 6: 1991-1994 Centrality and Density

Le2ap thG
fT intereSting netW°rkS are the °neS With both stron9 densitVand strong cen-

trality Few of these emerge, which testifies to software engineering's somewhat indefinite fo-
cus. None are .dentified in 1987-1990. However, in the 1991-1994 data, Net^TTaSd
-4 have these properties. These networks also have strong interaction with each other. Net-
works shows strong centrality. Network-2 shows strong density but weak (actually zero) cen-

^el; iTandt T^ * "T™> ***** "' S° te <"«*» -Jestmui o . Network-10 and Network-11 are below the median for both centrality and density scores Sim-
ilar analyses can be performed on the other periods.

5.3 Evidence of a Coalescing Field
Indicates are that software engineering is finding more general definition in 1991 -1994 than
«n the other two earlier tme periods. We can see this by looking at data for numbers of net-

CMU/SEI-95-TR-019
27

works, for centrality, and for density in Table 9.

Table 9: Comparison of Properties for Time Periods

Property 1982-1986 1987-1990 1991-1994

Number of
Networks

15 16 11

Median
Centrality

.2176 .2176 .2664

Median
Density

.0507 .0458 .0350

This comparison is especially striking for the periods 1987-1990 and 1991-1994. We observe
that the number of networks declined, the centrality measure increased, and the density mea-
sure decreased. This indicates more integration of subtopics and fewer isolated networks, as
would be expected in a more focused discipline. Future data will be needed to evaluate this
possible trend.

28 CMU/SEI-95-TR-019

6 Super Network Analysis

6.1 Methodology
In addition to describing how networks compare within a period, we can be more specific in
describing how networks interact with other specific networks; this addresses centrality in a
more focused fashion, but does not substitute for the general centrality measure.

We chose to operationalize principal and secondary networks as follows: If Network-A has in-
ternal nodes that are Pass-2 nodes in x links of Network-B, and each of these links has a
Pass-2 S value that exceeds the minimum Pass-1 S value of Network-B, then Network-A is
a secondary network of Network-B.

Using this way of determining principal and secondary networks, we can describe super net-
works of networks. The relationships in these super networks are not inherently bi-directional,
as are network links (at least as defined using S).

6.2 Findings

Tables 10,11, and 12 give all networks that have at least one qualifying connection with other
networks. Shown with each network is an entry in the form y(z); y indicates the associated
network and z shows the number of qualifying links. From this, we can then construct a super
network at whatever threshold of x we choose.

Setting the threshold at x = 2 qualifying connections, we can construct a super network of net-
works for each period as shown in Figures 7, 8, and 9. By selecting higher or lower values for
the threshold (either in terms of the number of qualifying links or the level of qualification), we
can derive other super networks.

Consider the 1991-1994 super network (Figure 9) and its underlying generating data (Table
12). The names and other prominent descriptors of 1991 -1994 networks are included in Figure
9 for convenience because they are used in the following discussion.

Some observations include the following:

• Network-2, -5, -6, -10, and -11 are isolated networks.

•Network-3 is a secondary network of principal network Network-8-
Network-7 is a secondary network of Network-8.

• Network-3 is a principal network and a secondary network relative to both
Network-4 and Network-7.

• Network-7 is especially strongly connected to Network-3; Network-3 is
less strongly connected to Network-7 (at least relative to the former).

CMU/SEI-95-TR-019 —
29

Putting this in context of the networks' contents, we might conclude the following:

• Object-oriented programming is a major focus of software development.

• Software libraries have combined with object-oriented methodoloqies as
principal development activities.

• The major systems used now in software engineering are Ada C++ C
UNIX, X-windows, and Microsoft Windows. ' ' '

• Computer-aided software engineering and object-oriented languages are
emerging as specific tools in software development.

Looking further at the isolated networks and the centrality/density diagram, we might conclude
that Petn Nets is either an emerging or dying research topic because it is completely isolated
from other networks. Many other conclusions and impressions are derivable from the networks
and super networks. Interested readers can make additional analyses with the information
provided.

Table 10: Possible 1982-1986 Super Networks

Possible 1982-1986 Super Networks

Network Connected Networks
[network number(number of links)]

1 3(1), 6(2), 11(2), 15(1)

2 none

3 1(1), 15(2)

4 none

5
6(2)

6 1(2), 5(2), 7(1), 8(1), 10(1), 11(2), 15(1)

7 none

8 11(1), 14(1)

9 none

10 none

11 1(2), 6(2), 8(2)

12 none

13 none

14 8(1)

1 '5
1(1), 3(2), 8(1)

30
C MU/SEI-95-TR-019

Table 11: Possible 1991-1994 Super Networks

Possible 1991-1994 Super Networks

Network

10

11

Connected Networks
[network number(number of links)]

7(1), 9(2)

none

4(2), 7(5)

3(3), 6(1)

none

4(1)

1(1), 3(13)

1(1), 3(5), 7(3)

1(2)

none

none

CMU/SEI-95-TR-019
31

Table 12: Possible 1987-1990 Super Networks

Possible 1987-1990 Super Networks

Network Connected Networks
[network number(number of links)]

1 none

2 4(3)

3 none

4 2(4), 6(5), 15(2), 16(1)

5 9(4)

6 4(2), 5(2), 9(5), 14(1), 16(1)

7 none

8 none

9 5(7), 6(5), 10(1), 15(1)

10 2(1), 6(1), 9(1), 15(2)

11 none

12 none

13 none

14 none

15 4(1), 6(2), 9(3), 10(3)

16 6(1)

32
CMU/SEI-95-TR-019

Figure 7: 1982-1986 Super Network, x = 2

r ~\

© 0

© ©
©

Figure 8: 1987-1990 Super Network, x = 2

CMU/SEI-95-TR-019
33

"\

©0
0 ©
0

■■■■■■■■■■■■in I ■■■■■III III 11II III ■■■■■■IIIIMIMIIIIII II11III III

Network 1 - User Interfaces
Computer Science Education

Network 2 - Petri Nets
Network 3 - Software Development - Object-Oriented Programming

Object-Oriented Programming, C
Network 4 - Software Libraries - C++ - Microsoft Windows
Network 5 - Windows
Network 6 - X-Windows
Network 7 - Tools and Techniques - CASE - Systems Analysis and Design

Ada, Object-Oriented Programming, Programming Environments
Network 8 - Requirements/Specifications

Testing and Debugging, Program Verification
Network 9 - General

Computer Science Education
Network 10 - Concurrent Programming
Network 11 - Metrics J

Figure 9: 1991-1994 Super Network, x = 2

34 CMU/SEI-95-TR-019

7 Trends over Periods

By examining the super networks and their component networks over the different time peri-
ods, we can observe aspects of the evolution of software engineering. First we consider spe-
cific contexts of some descriptors in different time periods; then we illustrate a way to trace the
transformation of general network themes over time.

This general methodology is applicable in other similar applications. We demonstrate this
technique for CCS findings.

7.1 Analysis of Descriptor Contexts
Through the use of network names, we observed that the foci of study in each period were
software development (which includes management), user interfaces, parallelism, verification
and validation, requirements/specifications, and tools and techniques. However while these
foci maintain some of the same connections over different time periods, they also evolve bv
forming new connections to different nodes. For example, the 1991-1994 Network-7 (Tools
and Techniques) appears with CASE, objected-oriented techniques, reuse, and Ada- whereas
in the relatedl 982-1986 Network 5, Tools and Techniques appears with Pascal and structured
programming topics.

Much of the change can be gleaned from detailed examinations of networks. To illustrate this
process, we will present two detailed cases.

First, we will look at some smaller portions of pertinent networks. In 1982-86 Ada appears as
four nodes in Network-1 (Software Management - Ada)« but in a rather isolated fashion (Fig-
ure 10) Later, it becomes an integral part of 1987-1990 Network-15 (Reusable Software) (Fiq-

DeSilnWP 1"1
1-:994

h
NetWOrk-7 <*** «nd Techniques - CASE - Systems Analysi and

Design) (Figure 12); ,n the middle time period, it associates with high-level concepts such as
software reuse, software libraries, module interfaces, concurrency, and object-oriented soft-
ware. In the latter period, it associates with military, which demonstrates Ada's special impor-

Itt^tJ 1AH arena °f f°ftWare devel0?ment- and with Computer science education, which

iTJ^oZll^ 'mPOrtanCe In ^ reS6arCh C°mmUnity: ltS aSSOdati0n With reusable

' ^XZSSEZZ^ ^ 3PPear ln ^ aPPr0Pria,e CCS «*™ -t was the object of study

"■ Ada appears in seven, networks during each time period; these networks and contexts are se,ected as exam-

CMU/SEI-95-TR-019
35

r -\

Ada D.3.3 Ada D.2.6

AdaD.3.1

Software quality assurance (sqa) D.2.9

Ada D.3.2

Metrics D.2.8

Software management K.6.3

Life cycle D.2.9

Concurrent programming structures D.3.3

Figure 10: Ada in Network-1,1982-1986

r
Software libraries D.2.2

Modules and interfaces D.2.2 Ada D.2.6

Reusable software D.2.m

Software development K.6.3

Figure 11: Ada in Network-10,1987-1990

36
CMU/SEI-95-TR-019

As high-level software issues become more integrated, older issues fade. Pascal Basic and
Cobol appear in the 1982-1986 Network-5 (Tools and Techniques - Structured Programming
- Pascal; see Figure 13). This network is based on programming-in-the-small issues, such as
structured programming and top-down programming. In the 1987-1990 Network-8 (Structured
Programming), Basic and Cobol appear almost in isolation with structured programming (see
Figure 14). That theme then disappears in 1991-1994 as software engineering research
moves to programming-in-the-large concerns.

Reusable software D.2.m

■N
Computer science education K.3.2

Optimization D.3 U
Tools and techniques D.2.2

Figure 12: Ada in Network-7,1991-1994

CMU/SEI-95-TR-019
37

Data types and structures D.3.3

Procedures and functions and sub-
routines D.3.3

Structured programming D.2.2

Cobol D.3.2

Tools and techniques D.2.2

Figure 13: Structured Programming in Network-5,1982-1986

r Basic D.3.2

Structured programming D.2.2 Methodologies D.2.10

J
Figure 14: Structured Programming in Network-8,1987-1990

We can summarize some other observations; the reader may reference the corresponding
maps in the appendix.

38
CMU/SEI-95-TR-019

The topic of standards, which is important in any well defined engineering field, appears in iso-
lation in 1982-1986 and 1987-1990 (Network-4 and -7, respectively, both named Standards)
then goes away in 1991 -1994. This indicates that standards have not been integrated into oth-
er important software engineering discussions in any of the time periods and even cease to
be discussed with any regularity in the most recent time period, though not all the most recent
data have been analyzed.

Petri nets and unbound action devices appear in isolation in Network-2, 1991-1994. We can-
not tell if they will be part of a larger network yet. Modules and interfaces appear in isolation
in Network-12,1982-1986; then appear more interrelated with other descriptors, e.g., with Ada
in1987-1990 Network-10 (Concurrent Programming - Ada)) and with reusable software in
1987-1990 Network-15 (Software Management - Design). After that, modules and interfaces
do not appear, but reusable software and related themes are dominating; perhaps the topic of
modules and interfaces has been subsumed in these expanded topics. We will return to this
in a later chapter of this report.

The networks and contexts discussed here are not exhaustive. Many other transformations of
themes are suggested by the networks and their maps.

7.2 Analysis of Networks Across Time Periods

7.2.1 Methodology

The transformation of networks and their intersections with other networks across time periods
provides insights into the emergence of software engineering research themes. To quantify
this analysis, we apply the similarity index (SI) approach, which is patterned after Callon's dis-
similarity index. [Callon 91].

SI measures the intersection of the descriptors in two networks. It does not directly include
the corresponding links in networks; however, since all descriptors in a network are at least
indirectly linked, this metric captures some portion of network similarity.

Consider two networks A/,, and N,. Let w, be the number of descriptors in A/, let w- be the
number of descriptors in Nj ,and let Wjj be the number of descriptors common to N- and N
Then, ' ''

Sl{wh wj, w,j) = 2x(j^±-^ , o<SI<i.

We multiply by 2 so that the maximum value of S/ is 1, which occurs when N, and N- have
identical nodes. ;

7.2.2 Findings

We can apply si to examine the emergence of some 1991-1994 networks. Especially inter-
esting are the three networks showing both strong centrality and density values (called core
networks or core themes). The networks are Network-1, User Interfaces; Network-3, Software

CMU/SEI-95-TR-019 " "— - :
39

Development - Object-Oriented Programming; and Network-4, Software Libraries - C++ - Mi-
crosoft Windows.

First, consider 1991-1994 Network-1, User Interfaces. It has reportable SI intersections with
four 1987-1990 networks, as shown below.12

wi N2 w, w2 wn SI

1991 -1994 Network 1 1987-1990 Networks

Requirements Specifications- 1. Network-5: User/Machine

Systems Analysis and Design Systems 14 14 6 0.423

2. Network-6: Methodologies -

Software Development 14 20 7 0.412

3. Network-9: Applications

and Expert Systems - Tools

and Techniques 14 19 5 0.303

4. Network-16: Software

Management 14 11 5 0.400

Hence, the 1991-1994 theme User Interfaces incorporates descriptors from several 1987-
1990 networks. Its emergence history is complicated; tracing it further could require investiga-
tion of four 1987-1990 networks and of all their 1982-1986 predecessor networks.

Similarly, 1991-1994 Network-3, Software Development - Object-Oriented Programming, dis-
plays a multiply engendered network history. It has reportable SI values with seven 1987-
1990 networks.

12 Only CCS descriptors defined in both pertinent time periods are included in SI descriptor counts. To ensure

notable intersection between N, and Nj, we require w,y > 5 before reporting SI.

40 CMU/SEI-95-TR-019

IV l " ff: 2 w{ w2 v7^2 57-x
1991 -1994 Network 3 1987-1990 Networks

Software Development - 1. Network-4: Requirements/

Object-Oriented Programming Specification - Methodologies 18 16 5 0.294

2. Network-6:

Software Development 18 20 7 0.369

3. Network-9: Applications

and Expert Systems - Tools

and Techniques 18 19 5

4. Network-10: Concurrent

Programming - Ada 18 18 7

5. Network 14: Software

Configuration Management 18 6 6 0.500

6. Network 15: Reusable

Software 18 16 7 0417

7. Network 16: Software

Management - Design 18 11 8 0.552

0.270

0.389

Observe that 1987-1990 Network-14, Software Configuration Management, was completely
absorbed by thel 991-1994 network (i.e., all descriptors of the earlier network are descriptors
of the latter network).

Now, consider 1991 -1994 Network-4 Software Libraries - C++ - Microsoft Windows It has a
reportable si value, 0.375, for only one 1987-1990 network, Network-15, Reusable Software
Tracing this latter network to 1982-1986 ones shows that it has a reportable si value 0 343'
only for 1982-1986 Network-6, Software Development. This 1987-1990 network also absorbs
1982-1986 Network-7, Software Libraries, and Network-12, Modules and Interfaces; but each
of these networks has fewer than five descriptors, so criteria for si scores are not met This
history suggests a relatively well-defined emergence path for themes dealing with software re-
use.

SI analysis can also show the lack of a traceable past. Consider 1991-1994 Network-6 X-
W.ndows It has no identifiable 1987-1990 predecessors. Only four networks from that earlier
period share even one descriptor with it (in all cases the same descriptor-(User interfaces
d.2.2)). Similarly, 1991-1994 Network-5,Windows, has no reportable 1987-1990 predeces-
sors. Only two 1987-1990 networks share any descriptors with it (1987-1990 Network-10 and
-15, with one and two descriptors, respectively). Taken together, we see a rapid emergence
of windows-based research. Sometimes research foci emerge quickly, as expected in a dy-
namic field. '

CMU/SEI-95-TR-019
41

7.2.3 Similarity Index Within a Time Period

SI can also be useful within a time period to assess the similarity of companion networks.
Consider the 1991-1994 core networks: They have substantial intersection with each other,
as seen below:

f A/, N2 IV, w2 wn SI \
1991-1994 Network 1 1991-1994 Network 3

User Interfaces Software Development

Object-Oriented Programming

20 20 7 0.350

1991-1994 Network 1 1991-1994 Network 4

User Interfaces Software Libraries -C++ -

Microsoft Windows

20 17 5 0.270

1991-1994 Network 3 1991-1994 Network 4

Software Development Software Libraries - C++ -

Object-Oriented Programming Microsoft Windows 20 17 6 0.324

The network predecessors of 1991-1994 core themes demonstrate notable characteristics. All
of them with reportable SI scores also have high centrality scores (Figures 4, 5, and 6) for the
time periods of interest, except for 1987-1990 Network-14, which had a slightly below-median
score. However, that network was completely absorbed by its successor. Similarly, two 1982-
1986 networks with below-median centrality scores were completely absorbed by their suc-
cessor, even though their SI scores were not reportable. In these latter cases, the networks
were all small and relatively isolated.

This observation suggests that core themes may normally emerge from predecessor networks
that already display relatively strong connections to other networks within the same time peri-
od. It also suggests that isolated networks may quickly become part of more integrated net-
works in a succeeding time period. This absorption could occur because one new link
connects a small, isolated network to a larger network. However, certainly not all isolated net-
works merge with larger ones, as is so far evident of the Standards networks of 1982-1986
and 1987-1990. As noted above in the case of the Structured Programming theme, a network
also can transform from a core theme (1982-1986, Network-5) to an isolated theme (1987-
1990, Network-8).

42 CMU/SEI-95-TR-019

8 Descriptor Analysis

Direct analysis of co-word generated descriptor nodes gives a supporting view of which de-
scriptors in CCS-but outside of software engineering-interact with software engineering de-
scriptors.

8.1 Analysis
Recall that only descriptors that co-occur with other descriptors a requisite number of times
and with relatively high strength are candidates for inclusion in networks. Many descriptors
that appear in documents do not associate often enough or strongly enough with other de-
scriptors to be considered for inclusion. The strengths of associations relative to other associ-
ations further limit which links enter into a network. Of the 1,606 unique descriptors appearing
in all documents, 158 (9.8%) descriptors satisfied these criteria and appeared in the generated
networks. We cannot define the maximum possible number of nodes because of unrestricted
numbers of implicit subject descriptors.

Table 13 summarizes the most frequently appearing descriptors in each time period. The table
was generated by first obtaining the 15 most frequently appearing descriptors within each time
period and then eliminating redundancy from the combined lists. Table 13 lists descriptors al-
phabetically. For each descriptor, its rank in each period is shown by the number of documents
in which it appears, the number of networks in which it appears, and the number of times it
appears (a descriptor can be connected to more than one other descriptor in the same net-
work, as evident in Figure 3).

CMU/SEI-95-TR-019 "
43

Table 13 : Summary of Descr

of Descriptor Statistics

iptor Data

Rank Order i>y Generation

Descriptor Rank in # Documents Rank in # Networks Rank in # times in Net-
work

82-86 87-90 91-94 82-86 87-90 91-94 82-86 87-90 91-94

Ada D.3.2 8 13 15 7t 10t 3t 13 6t 7

Applications and expert sys 1.2.1 - 15 - - 6t - - 5 -

Computer aided... (CASE) D.2.2 # # 11 # # lit # # 8t

Correctness proofs D.2.4 14 - - lit - - 10t - -

Design D.2.1 # 14 - # 10t - # 14 -

General D.2.0 3 7 7 7t 10t 11 10t 12t 15

Human factors H. 1.2 6 8 - 7t 6t - 10t 12t -
Interactive D.2.6 - 12 - - 10t - - 6t -

Management D.2.9 9t - 13 4t - 5t 5t - 8t

Methodologies D.2.10 # 3 10 # 1 lit # 1 12t

Metrics D.2.8 15 - - 7t - - 8t - -
Object-oriented programming D.I.5 # # 2 # # 2 # # It

Program verification D.2.4 13 - - lit - - 14t - -
Programming environments D.2.6 2 4 6 It 4 8t 5t 9t 12t

Requirements/specifications D.2.1 12 6 8 6 6t 15 4 6t 6

Reusable software D.2.m - 9 9 - 6t 5t - 4 8t

Software development K.6.3 4 5 5 It 2 3t 1 3 It

Software management K.6.3 9t - - It - - 2t - -
Structured programming D.2.2 11 - - 15 - - 14t - .
Testing and debugging D.2.5 7 10 12 4t 15 lit 8t 15 8t

Tools and techniques D.2.2 5 2 3 7t 3 1 2t 2 4

User interfaces D.2.2 1 1 4 lit 5 8t 5t 9t 5

User interfaces H.5.2 # # 14 # # 8t # # 12t

User/machine systems H.1.2 - 11 2 - 10t - - 9t -
Windows D.2.2 - 1 - - 5t - - It

= Node not in CCS for period.

'= I?' f0r,ran,ked P,°/?°n- TleS f°r P°Siti0n " a" ranked " "; "eXt ranked position beSins at n+m- where m is °™°er of ties ranked at n - = Not in highest 15 for period.

Some common themes also emerge from the descriptor data. The following themes appear
consistently and repeatedly: tools and techniques, user interfaces, programming environ-

44
CMU/SEI-95-TR-019

merits, reusable software, design methodologies, software management and development,
testing and debugging, verification, metrics, Ada, and requirements/specifications. Some new
descriptors are prominent in 1991-1994 data, including computer-aided software engineering,
object-oriented programming, and Windows.

Only the following 25 descriptors appeared in all time periods (not just among the 15 most
common by period).13

• Ada D.3.2

• Concurrent programming D.1.3

• Curriculum K.3.2

• Design D.2.10

• General D.2.0

• Human factors H.1.2

• Interaction techniques 1.3.6

• Introductory and survey A.1

• Management D.2.9

• Mathematical software G.4

• Methodologies D.2.1

• Metrics D.2.8

• Program verification D.2.4

• Programming environments D.2.6

• Requirements/specifications D.2.1

• Software development K.6.3

• Software libraries D.2.2

• Software management K.6.3

• Software quality assurance (sqa) D.2.9

• Specification techniques F.3.1

• Specifying and verifying and reasoning about programs F.3.1

• Testing and debugging D.2.5

• Tools and techniques D.2.2

• User interfaces D.2.2

• User/machine systems H.1.2

Another way to see the filtering effect of the algorithm is to count the descriptors in each major

13- Recall that new CCS descriptors created in 1987 and 1991 are not candidates for appearance in preceding
time periods. Hence, some descriptors that are now commonly used, such as object-oriented programming
D. 1.5, could not appear in this list. a y

CMU/SEI-95-TR-019 " ~
45

CCS category in the original data and compare that number to the ones that emerged as net-
work nodes.Table 14 gives the percentages of the 57,727 descriptors in the original data by
CCS category (first column), the percentages of the 1,606 unique descriptors in the original
data by CCS category (second column), and the percentages by CCS category of the 158 de-
scriptors that passed the co-word analysis filter to reach the resulting 42 networks.

Table 14: CCS Descriptor Summary Data

CCS Category All Descriptors
(57,725)

Unique
Descriptors

(1,606)

Network
Descriptors

(158)

A-General Literature 0.6% 0.4% 1.3%

B-Hardware 1.1% 7.5% 0%

C-Computer Systems Organization 4.4% 8.5% 3.2%

D-Software 59.1%
(40.1%,inD.2)

31.9%
(11.2%inD.2)

58.3%
(29.1%inD.2)

E-Data 0.6% 1.8% 0%

F-Theory of Computation 4.5% 5.2% 6.3%

G-Mathematics of Computing 1.7% 5.3% 1.9%

H-Information Systems 8.9% 11.6% 8.9%

I-Computing Methodologies 7.6% 16.1% 12.0%

J-Computer Applications 2.5% 3.6% 1.3%

K-Computing Milieux 8.9% 8.1% 11.3%

The hardware and data CCS categories were not represented at all in the networks; and the
general literature, computer systems organization, mathematics of computing, and computer
applications categories were only marginally included. The theory of computation category
was included primarily with respect to program verification.

Listed below are the 8 non-D.2 descriptors included among the 15 most frequent descriptors
in networks (Table 13). These descriptors highlight interactions among D.2 descriptors and
other descriptors in CCS: D.1.5 - Object-Oriented Programming.

D.3.2 - Ada

H.1.2- Human factors

H.1.2 - User/machine systems

H.5.2 - User interfaces

1.2.1 - Applications and expert systems

K.6.3 - Software development

K.6.3 - Software management

46 CMU/SEI-95-TR-019

8.2 Findings

Based on our analyses, it appears that much of software engineering's intersection with the
rest of computing is in the areas of user interaction, software management, and programming
methodology. Very little interaction with hardware, data, mathematics of computing, and com-
puter applications is evident. Further analyses will reinforce this hypothesis.

Just as important, our analysis of the CCS descriptors shows that some D.2 descriptors play
a less important role than implied in several software engineering definitions [Naur 69], [Boe-
hm 76], [Zelkowitz78], [Fairley85], [Humphrey 89], [Shaw 90], [Denning 92], [IEEE 89]. These
definitions normally incorporate terms such as large-scale, economical, managerial, interdis-
ciplinary, production, maintenance, reliable, dependable, efficient, safety, design, and specifi-
cations. We see some of these themes in our findings, but not all of them.

Human factors is a consistent and important theme in all periods we analyzed. This is contrary
to other attempts to define software engineering where human factors is often deemed mar-
ginal. Conversely, economic aspects are mentioned consistently in these other discussions.
However, we found little on that subject in the research and development literature, even
though descriptors under (D.2.9) Management - Cost Estimation, and Management - Time Es-
timation, as well as (K.6.0) General, Economics were available. Over the three time periods
analyzed here, these descriptors appeared in the unfiltered data 117 times, 15 times, and 33
times, respectively, but did not associate strongly enough with other descriptors to be placed
in any networks.

Also, we find little evidence of a maturing profession as judged by commentary on issues such
as ethics, licensing, certification, human safety, and codes of good practice, even though ap-
propriate CCS nodes are defined. None of these nodes reached the networks, and only min-
imal inclusion was found in the almost 58,000 total, unfiltered descriptors. While the standards
descriptors were included in the first two generations of networks (but in isolated fashions)
they did not appear in 1991 -1994 networks. As stated by Shaw [Shaw 90], an engineering dis-
cipline of software is still in the early stages of development.

CMU7SEI-95-TR-019 ~ -
47

48 CMU/SEI-95-TR-019

9 Conclusions

9.1 Methodology
This study demonstrates the feasibility of co-word analysis as a viable approach for extracting
patterns from and identifying trends in large corpora where the texts collected are from the
same subdomain and divided into roughly equivalent quantities for different time periods. This
methodology has also been used in other studies at the Software Engineering Institute as a
way of filtering risk information collected at external sites [Monarch 95] and for differentiating
process assessments of external sites-those that showed an improvement from those that did
not-with respect to thematic concerns. Moreover, the Software Engineering Risk Repository
(SERR), an information retrieval system containing risk and risk mitigation information from
over 35 software risk assessments, uses term co-occurrence networks for suggesting related
terms to those found in a user's query [Monarch 96]. The system is currently being user tested.

9.2 Findings

What can we conclude about the state of software engineering based on our study of publica-
tions? First, the field is rapidly evolving as is demonstrated by the changing descriptors in net-
works, the changing connections in super networks, and the changing centrality/density
scores. The analysis of the 1991 -1994 data shows a trend towards focusing on object-oriented
themes, software reuse/software library themes, and user interface themes. Consistent
themes are evident over the time periods studied, although contexts change. Some consistent
themes are user interfaces, tools and techniques, verification and validation, software reuse,
requirements and specifications, and design methodologies.

9.2.1 The Role of Software Tools

The core themes of user interfaces and software development (with object-oriented methods)
both display underlying principles (such as screen design, design methodologies, reusable
software, and so forth) together with software tools that embody some of these underlying
principles. These tools include X-Windows, Microsoft Windows, Ada, C++, and UNIX. CASE
tools are prominent in software development networks, but names of specific CASE tools are
not present. This observation suggests that the maturity of a software engineering subfield can
be gauged by the maturity of relevant supporting tools. Earlier we observed that the languages
Pascal, Basic, and Cobol dropped from the software engineering descriptors, along with pro-
gramming-in-the-small issues such as structured programming. They were replaced by pro-
gramming-in-the-large issues and by a different set of supporting tools appropriate for large-
scale software development environments. As software engineering matures, we can expect
to observe the names of other specific software tools and systems, and we may see new core
areas emerge as supporting tools are refined.

Because CCS is a fixed taxonomy with periodic updates to descriptors, the role of implicit sub-
ject descriptors may be crucial in observing trends between and across updates to the classi-

CMU/SEI-95-TR-019 49

fication system. Therefore, names of languages and systems as reflected in CCS descriptors
provide numerous insights into observing a field's maturation.

9.2.2 Software Engineering and Computer Science

What is the relationship between software engineering and computer science? We know of no
comparable study of computer science terminology, so a comparison is difficult, but some ob-
servations are apparent. The latest detailed curriculum model for computing [Denning 89], list-
ed the nine subareas of computing as algorithms and data structures, programming
languages, architecture, numerical and symbolic computation, operating systems, software
engineering and methodology, database and information retrieval, artificial intelligence and ro-
botics, and human-computer communication. These areas are not meant to be independent,
of course.

As shown by its descriptor networks, software engineering incorporates topics from most of
these areas, but it stands alone in its emphasis on management, process, design, testing,
specifications, and other fundamental engineering terms. It fits the fundamental engineering
paradigm better than it fits the mathematics or experimental science paradigms [Denning 89].

Software engineering certainly draws from computer science theories, but it also depends
heavily on theories from management, psychology, mathematics, and other related fields. We
feel it is emerging as a discipline in computing rooted in computer science, but with its own
character and content.

9.2.3 Limitations of This Study

This study is based exclusively on refined publications, so it represents topics that are more
developed than some others. Surely, there is much activity in cost/time estimation, manage-
ment of programming teams, and other important but relatively immature areas. The lag time
from the invention of software technology until its acceptance into common practice is estimat-
ed at 15-20 years [Redwine 84], so this gap is not surprising. Also while CCS provides the
proper focus for this study, it may have limitations with respect to more detailed studies of soft-
ware engineering trends because of its fixed taxonomy. Applying co-word analysis to author-
defined descriptors, to abstracts, or to a document's text may reveal observations complemen-
tary to the ones we noted.

50 CMU/SEI-95-TR-019

10 References

[Boehm 76]

[Boehm 94]

[Brooks 87]

[Buckley 93]

[CR 95]

[CR 96]

[Callon 86]

[Callon 91]

[Coulter 91]

[Coulter 94]

[Courtial 89]

Boehm, B. "Software Engineering." IEEE Transactions on Comput-
ers C-25,12 (December 1976): 1226-1241.

Boehm, B. "The IEEE-ACM Initiative on Software Engineering as a
Profession." Sottware Engineering Technical Council Newsletter
13,1, (September 1994): 1.

Brooks, Jr., F. "No Silver Bullet: Essence and Accidents of Software
Engineering" Computer20, 4 (April 1987): 10-19.

Buckley, F. "Defining Software Engineering." Computer 26, 8 (Au-
gust 1993): 76-78.

"Periodicals Received." Computing Reviews 36, 11 (November
1995): 599-608.

'The Full Computing Reviews Classification System." Computing
Reviews 37, 1 (January 1996): 4-16.

Callon, M.; Law, J.; & Rip, A. "Qualitative scientometrics."Mapp/ng
of the Dynamics of Science and Technology, London- McMillian
1986.

Callon, M; Courtial, J-P.; & Laville, F. "Co-word Analysis as a Tool
for describing the Network of Interactions between Basic and Tech-
nological Research: The Case of Polymer Chemistry." Scientomet-
rics22,1 (January 1991): 153-203.

Coulter, N. "Changes to the CR Classification System." Computing
Reviews 32,1 (January 1991): 7-10.

Coulter, N.; & Dammann, J. "Current Practices, Culture Changes,
and Software Engineering Education." Computer Science Educa-
tion 5, 2 (1994): 91-106.

Courtial, J-P; & Law, J. "A Co-Word Study of Artificial Intelligence."
301 -311. Social Studies in Science, London: SAGE, 1989.

CMU/SEI-95-TR-019
51

[Denning 89]

[Denning 92]

[Dijkstra 89]

[IEEE 89]

[Fairley 85]

[Ford 89]

[Gibbs 89]

[Gibbs91]

[Gries91]

Denning, P; Gries, D.; Mulder, M.; Tucker, A.; Turner, J.; & Young,
P. "Computing as a Discipline." Communications of the ACM 32, 1
(January 1989): 9-23.

Denning, P. "Educating a New Engineer." Communications of the
ACM 35,12 (December 1992): 82-97.

Dijkstra, E. "On the Cruelty of Really Teaching Computer Science."
Communications of the ACM 32, 12 (December 1989): 1398-1404.

Software Engineering Standards. New York: Institute of Electrical
and Electronics Engineering, Inc. 1989.

Fairley, R. Software Engineering Concepts. New York: McGraw-
Hill, 1985.

Ford, G.; & Gibbs, N. "A Master of Software Engineering Curricu-
lum." Computer22, 9 (September 1989): 59-71.

Gibbs, N. "The SEI Education Program: The Challenge of Teaching
Future Software Engineers." Communications of the ACM 32, 5
(May 1989): 594-605.

Gibbs, N. "Software Engineering and Computer Science: The Im-
pending Split." Education and Computing 7 (1991): 111 -117.

Gries, D. "Teaching Calculation and Discrimination: A More Effec-
tive Curriculum." Communications of the ACM 34, 3 (March 1991):
45-54.

[Humphrey 89] Humphrey, W. Managing the Software Process. Reading, Mass:
Addison-Wesley, 1989.

[Jackson 94] Jackson, M. "Problems, Methods, and Specialization." Software 11,
6 (November 1994): 57-62.

[Law 92] Law, J; & Whittaker, J. "Mapping Acidification Research: A Test of
the Co-Word Method." Scientometrics 23, 3 (1992): 417-461.

52
CMU/SEI-95-TR-019

[Monarch 95] Monarch, I; & Gluch, D. An Experiment in Software Development

Risk Information Analysis (CMU/SEI-95-TR-014, ADA 302320).
Pittsburgh: PA: Software Engineering Institute, Carnegie Mellon
University, October 1995.

[Monarch 96] Monarch, I; Konda, S.; and Carr, M. "Software Engineering Risk Re-
pository." 1996 Software Engineering Process Group (SEPG) Con-
ference. Atlantic City, New Jersey, May 20-23; 1996.

[Naur 69] Naur, P.; & Randell, B (eds.), Software Engineering: A Report on a
Conference sponsored by the NATO Science Committee NATO
1969.

[Parnas 85]

[Parnas 90]

[Redwine 84]

[Sammet 82]

[Sammet 83]

[Sammet 87]

[Shaw 90]

[Turner 88]

Parnas, D. "Software Aspects of Strategic Defense Systems." Com-
munications of the ACM 28, 12 (December 1985): 1326-1335.

Parnas, D. "Education for Computer Professionals." Computer 23,
1 (January 1990): 17-22.

Redwine, S., Jr.; Becker, G; Marmor-Squires, A.; Martin, R.; Nash,
S.; and Riddle, W. "DoD Related Software Technology Require-
ments, Practices, and Prospects for the Future." IDA Paper P-1788,
Institute for Defense Analyses, Alexandria, Va. (June 1984).

Sammet, J; & Ralston, A. "The New (1982) Computing Reviews
Classification System-Final Version." Communications of the ACM
25, 1 (January 1982): 13-26.

Sammet, J. "Summary of Changes from 1982 to 1983 Version of
CR Classification System." Computing Reviews 24, 1 (January
1983): 7-8.

Sammet, J. "Summary of Additions from 1983 to 1987 Version of
CR Classification System." Computing Reviews 28, 1 (January
1987): 5-6.

Shaw, M. "Prospects for an Engineering Discipline of Software."
Software 6, 6 (November 1990): 15-24.

Turner, W.; Chartron, G.; Laville, F.; & Michelet, B. "Packaging In-
formation for Peer Review: New Co-Word Analysis Techniques." A.

CMU/SEI-95-TR-019
53

Van Raan (ed.), Handbook of Quantitative Studies of Science and
Technology. Amsterdam: North-Holland, 1988.

[Whittaker 89] Whittaker, J. "Creativity and Conformity in Science: Titles, Key-
words, and Co-Word Analysis." Social Science in Science, London:
SAGE, 1989.

[Zelkowitz 78] Zelkowitz, M. "Perspectives on Software Engineering." Computing
Reviews 10, 2, (June 1978): 197-216.

54
CMU/SEI-95-TR-019

Appendix: Maps of All Networks
Following are maps of all 42 networks generated by the co-word analysis used in this study.
These images were captured directly from the output of a graphical user interface and are pre-
sented in that form. Corresponding maps in the body of the paper were reconstructed to en-
hance readability. To facilitate automatic processing of networks, CCS descriptors and node
codes were appended in the original maps. In the following maps, nodes such as "metricsd2.8"
should be interpreted as "Metrics D.2.8."

Pass-1 descriptors are enclosed by thick boxes; while Pass-2 descriptors are enclosed by thin
boxes. Pass-1 links are shown by thick lines, Pass-2 links are shown by thin lines. Hashed
lines indicate two Pass-1 nodes linked during Pass-2; recall such links are treated as Pass-1
links because they join two Pass-1 nodes.

CMU/SEI-95-TR-019 -
55

A.1 1982-1986 Maps of 15 Networks

adad.2.6 |——|adad.3.2 |—| software managementk.6.3 |"^w| distribution and maintenanced.2.7 |

software psychologyd.m

software quality assurance (sqa)d.2.9

\7 I
Figure A.1-1: Software Management - Ada

File Options

| logic programmingf.4.l|

| lo gic pro grammingi.2.3 |

582-1986: Map 2 - Logic Programmir

_b8 Jail
Figure A. 1-2: Logic Programming

56
CMU/SEI-95-TR-019

jA^ilrmmmmmm'mHMmttm^nii m L«—,.i«m,»!....'.i '. ?.'■ •**^.lMllM^^/,,/,.,l,^,,|l,^;TTOXOTn;;;.;:.........:;2]ii;.i;>;"i'.j ■'i.lT

Figure A.1-3: User Interfaces

(■H
File Options

I standards d.2.0

| standardsk.l |

[982-1986: Map A - Standards"

Help
"IS!

Figure A.1-4: Standards

CMU/SEI-95-TR-019 57

Figure A.1-5: Tools and Techniques - Structured Programming - Pascal

Figure A.1-6: Software Development

58 CMU/SEI-95-TR-019

Figure A.1-7: Sottware Libraries

WW? nijn a nu a no.n.n BQ> ww» » omyyjw^i

Figure A.1-8: Testing and Debugging - Correctness Proofs

CMU/SEI-95-TR-019
59

3r«&r~«*rrKf***r~«w~nrtt*-, .y.y.y^wrtvrtwnvrtYiv »iwvn ,wvw »wwft ww» .'ww*. ^w** iSJ^&Vil

Figure A.1-9: Reliability

Figure A.1-10: Program Editors

60 CMU/SEI-95-TR-019

jjj^wfj ■ygj^ft^iiäyw.t.WW [ippfinnnnnnpiif^nnnnniMnn^^ !iii|""Tr"HtiHmnminmm.;

File Options
SE&

mmmwTifn...t» ri.f.

user interfaces d.2.2 |logical designh 2.1 |

Help

concurrent pro grarnmingd.l .3

system managementk.6.4

program verificationd.2.4

human factorsh.l .2

|requirements/specificationsd.2.1 |' | systems analysis and designk.6.1 |

| systems developmentk.6.1 |

Figure A.1-11: Requirements/Specifications - Systems Analysis and Design

|module.s and interfacesd.2.2 |

582-1986: Map 12: Modules and Interfaces"

Figure A.1-12: Modules and Interfaces

CMU/SEI-95-TR-019
61

f1"1}"'" tiftumi. m». ,W;, ,-,., ,y ,;,:, Ai.i.iiHt.iiS,.i:. : , , . ■ '.'..::':;

^^^^^^^^^^^^^^ -: i'>ap-13;1982-3 388

Figure A.1-13: Real-Time Systems

| error handling and recoveryd.2.5 |

| abstract data typ es d.3.3 |

semantics d.3.1

«2-1986: Map 14 - Abstract Data Types'

Figure A.1 -14: Abstract Data Types

62
CMU/SEI-95-TR-019

Figure A.1-15: Metrics

CMU/SEI-95-TR-019
63

A.2 1987-1990 Maps of 16 Networks

Figure A.2-1: Geometrical Problems and Computations

File Options Help

[distributed systemsc.2.4 |

concurrent programmiigd.l .3

[distributed systemsd.4.7 |

abstract data typesd.3.3

methodologiesd.2.1

specification techniques!3.1

software developmentk.6.3

[real-time and embedded systemsd,4.7 |

|real-time systemsc.3|

specifying and verifying and reasoning about programsf.3.1 |

587-1990: Map 2 - Correctness Proofs/Languägeg

Ec 2 •MM»

Figure A.2-2: Correctness Proofs - Languages

64
CMU/SEI-95-TR-019

Figure A.2-3: Logic Programming

File Options • } - |ci

| specification techmquesf.3,l"|.

| designd.2.10

|methodologiesd.2T1

|requirements/specificationsd.2.1 |

|program verificationd.2.4*|

I software developmentk.6.3 |

| correctness proofsd.2.4 |

. I ,
| specifying and verifying and reasoning about programsf.3.1 |

| software quality assurance (sqa) d.2.9 |

| testing and debuggingd.2.5 |

| quality assurancek.6.4 |

J990: Map 4 - Requirements and Spccifications/Methodoloi

Figure A.2-4: Requirements/Specifications - Methodologies

CMU/SEI-95-TR-019
65

Figure A.2-5: User/Machine Systems

map-6;1987-19901
File Options

Introductory and surveya.t |

Help
~1K

| generali.2.0 | tools andtechniquesd.2.2"~|

| programming environmentsd.2.6 |

lcurriculumk.3.2 |«^| computer science educationk.3.2 |
documentatiorLd.2.7

managemexitd.2.9

| abstract data typesd.3.3~j
software configuration managementd.2.9 |

applications and expert systemsi.2.1 P^^Lmi^dol°siesd 2 ^

| expert system tools and techniquesi.2.5 |

37-1990: Map 6 - Methodologies/Software Development

Figure A.2-6: Methodologies - Software Development

66 CMU/SEI-95-TR-019

File Options

| standards d.2.0 |

| standardsk.l |

us ex interfaces d.2.2

987-1990: Map 7 - Standards-

Figure A.2-7: Standards

Help

2Z »in ■ i

J>

basicd.3.2

|structuccedprograainramgd.2.2 |

mimmimmmmmmmm ■MMMIIWIIIIWII^^
ap-8:1987-1390S"

metho dolo gias d.2 .t 0,

<87-1990: Map 8 - Structutured Program mir

£1 m
Figure A.2-8: Structured Programming

CMU/SEI-95-TR-019 67

map-9:1987-1990j

File Options
Help

| expert system tools andtechniquesi.2.5]

|toowledge acquisitioni.2.6 |

software developmentk.6.3

I concurrent programmingd.l .3]

|programming languages and softwarei.2.S

[representations (procedural and rule-based)i.2.4 |

u

57-1990: Map 9 - Applications and Expert Systemg;

2
>

Figure A.2-9: Applications and Expert Systems - Tools and Techniques

Figure A.2-10: Concurrent Programming - Ada

68
CMU/SEI-95-TR-019

us er interfaces d.2.2

87-lS>£>0: Map 11 - Computer-Aided DesTgS

"m™m™""m—""" "" n—nn-nr-n-ir-nmnnr-n-iii-nnnnnrnr-n-nr-nrnnniir rnnnnrni' wiMWim

Figure A.2-11: Computer-Aided Design

r r nr ir nr inrnnnnnnnnr nnnnrnr nnnonnnnr ui. i UULUJUUUULI JUL .

Figure A.2-12: Error Handling and Recovery

CMU/SEI-95-TR-019 69

Figure A.2-13: Distribution and Maintenance

metho dolo gies d.2.10

programming environments d.2.6 | | tools and techniques d.2.2

7-1990: Map 14 - Software Configuration Management

m
Figure A.2-14: Software Configuration Management

70 CMU/SEI-95-TR-019

m<i

Figure A.2-15: Reusable Software

Figure A.2-16: Software Management - Design

CMU/SEI-95-TR-019 71

A.3 1991 -1994 Maps of 11 Networks

file Options Help

windows d.2.2

software developmentk.6.3 | screen designh.sJl |mteractiim styleshT2]

Interaction techniquesi.3,6 |

|iiser interface management systems (uims)h.5.2
|evaIuation/methodologyh.5.2 |

| object- oriented programmingd.l .5

tools and techniques d.2.2 | I x-windowd.2.2 I

91-1994: Map 1 - User Interfaces^

Figure A.3-1: User Interfaces

Figure A.3-2: Petri Nets

72 CMU/SEI-95-TR-019

I software libraries d.2.2 |<

[tools artdtechrdquesd.2.2

Ireusable softwared.2.m 1*^ _ i . r--^

-| object- oriented programmingd.l .5 |

|software developmeiitk.6.3 | 1software configurationmanagementd"2T|

| software quality assurance (sqa) d.2.9 |

programming environments d.2.6 | [programming teams d.2.9 |

:1994: Map 3 - Software Development/Object-Oriented Programm!?

ill
Figure A.3-3: Software Development - Object-Oriented Programming

£ilt» options
rnap-4:1991-19948

[mathematical softwareg.4 |

I
| software libraries d.2.2 |—

Help
IS

| -user irvtcjrfacfcsd.2.2

tools Cüttd tfcchxiique.sd.2.2 |

| micro soft windowsd.2.2 |

[introductory aucid surveya.1 |

Figure A.3-4: Software Libraries - C++ - Microsoft Windows

CMU/SEI-95-TR-019
73

Rle Options
I II I I' I I III Mill li M ftr.'.'..--~t?t?»

Help j

|software selectionk.6.3 | |suppliersk.l |

| systems programs and utilities d.4.9 |

I application packagesk.8.1

| windowing systemsh.53
software librariesd.2.2

lhardwarek.8.2

object-orientedprogrammirigd.1.5 I

dosd.4.0 j

|graphicsk.8.1 | interaction stylesh.5.2

cd.3.2 [|sqlh.2.3 | | user interfacesh.S.2 |

1991-1994: Map 5 - Windows

Figure A.3-5: Windows

| portabilityd.2.7]

| window managers d.4.9 |- |x-wirtdowd.2.2^ | windowing systemsh.5.2 |

| user interfaces d.2T2~| | user interfacesh.5^2~| | windows d.2.2 |

[991-199-4: Ivlap 6 - X-Window-

za
Figure A.3-6: X-Windows

74 CMU/SEI-95-TR-019

Hie Options

ladad.3.2 -|nülitaryj.7 |

I Computer science educationk.3.2 I

I Compilers d.3.4 I . .
' . ■ [reusable softwared,2,m |

|Qpomizaiiond"3T| | software developmentk 6.3~

ftools and techniques d.2.2|

Help

~1K

| computer- aided software engineering (case) d.2.2 |

| object-oriented programmingd.l .5 |

testing and debuggingd.2.S managementd.2.9

Figure A.3-7: Tools and Techniques - CASE - Systems Analysis and Design

Figure A.3-8: Requirements/Specifications

CMU/SEI-95-TR-019 75

Figure A.3-9: General

Figure A.3-10: Concurrent Programming

76
CMU/SEI-95-TR-019

I software quality assurmire (sqa)d.2.9 |

| software developra.entk.6.3

I tools and techniquesd.2.2 I TZZ . _ _ i ■ 2 I |managementd.2.9 |

[991-1994: Map 11 - Metrics'

 in in ...J.,...,.„.J.

Figure A.3-11: Metrics

CMU/SEI-95-TR-019 77

78 CMU/SEI-95-TR-019

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

lb. RESTRICTIVE MARKINGS

None

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
— Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-96-TR-019

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-95-019

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

11. TITLE (Include Security Classification)

An Evolutionary Perspective of Software Engineering Research Through Co-Word Analysis

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)
Neal Coulter, Ira Monarch, Suresh Konda, Marvin Carr

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

16. SUPPLEMENTARY NOTATION

14. DATE OF REPORT (year, month, day)

March 1996
15. PAGE COUNT

80

17. COSATI CODES

HELD GROUP SUB. GR.
18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

Computing Classification System, co-word analysis, software engineering
literature, software engineering research

19. ABSTRACT (continue on reverse if necessary and identify by block number) ~~ ~ ~~

This study applies various tools, techniques, and methods that the Software Engineering Institute is
evaluating for analyzing information being produced at a very rapid rate in the discipline-both in prac-
tice and in research. The focus here is on mapping the evolution of the research literature as a means
to characterize software engineering and distinguish it from other disciplines. Software engineering
is a term often used to describe programming-in-the-large activities. Yet, any precise empirical char-
acterization of its conceptual contours and their evolution is lacking. In this study, a large number of
publications from 1982-1994 are analyzed to determine themes and trends in software engineering.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED | SAME AS RPT[~| DTIC USERS I

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

DD FORM 1473, 83 APR

22c. OFFICE SYMBOL

ESC/ENS (SEI)

EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ABSTRACT — continued from page one, block 19

The method used to analyze the publications was co-word analysis. This methodology identifies
associations among publication descriptors (indexing terms) from the Computing Classification
System and produces networks of terms that reveal patterns of associations.The results suggest
that certain research themes in software engineering remain constant, but with changing thrusts.
Other themes mature and then diminish as major research topics, while still others seem tran-
sient or immature. Certain themes are emerging as predominate for the most recent time period
covered (1991-1994): object-oriented methods and user interfaces are identifiable as central
themes.

